2,057 research outputs found

    Controller evaluations of the descent advisor automation aid

    Get PDF
    An automation aid to assist air traffic controllers in efficiently spacing traffic and meeting arrival times at a fix has been developed at NASA Ames Research Center. The automation aid, referred to as the descent advisor (DA), is based on accurate models of aircraft performance and weather conditions. The DA generates suggested clearances, including both top-of-descent point and speed profile data, for one or more aircraft in order to achieve specific time or distance separation objectives. The DA algorithm is interfaced with a mouse-based, menu-driven controller display that allows the air traffic controller to interactively use its accurate predictive capability to resolve conflicts and issue advisories to arrival aircraft. This paper focuses on operational issues concerning the utilization of the DA, specifically, how the DA can be used for prediction, intrail spacing, and metering. In order to evaluate the DA, a real time simulation was conducted using both current and retired controller subjects. Controllers operated in teams of two, as they do in the present environment; issues of training and team interaction will be discussed. Evaluations by controllers indicated considerable enthusiasm for the DA aid, and provided specific recommendations for using the tool effectively

    Privacy, self-disclosure, social support, and social network site use : research report of a three-year panel study

    Get PDF
    This research report presents data from a study conducted in Germany based on a 3-year panel design. From October 2009 to April 2012, five waves of data collection were established. N = 327 participants from a convenience sample gave answers to questions regarding media use, privacy behaviors, well-being, social support, authenticity, and specific online experiences with a particular emphasis on social network sites (SNSs). It was found that across the 3 years of the study, people increasingly gained online social capital, developed a greater need for privacy, started to disclose more personal information online, and continually spent more time on SNSs. At the same time, people's willingness to disclose information in offline settings as well as their risk assessment of SNSs significantly decreased over time. Furthermore, frequent users of SNSs had more online social capital than less frequent users, disclosed more personal information online, knew more ways to restrict the access to their profiles, and were more authentic in their online profiles. People who had a higher need for privacy were less satisfied with their lives, less authentic in both their personal relationships and their online profiles, and generally showed more negative effects on different psychological variables. Respondents who had more online social capital also reported having more general positive affect and more offline social support. In the research report, further results are reported: Each variable is presented both individually and in context with other measures. The study is the first longitudinal study on online privacy and as such the first to be able to report mutual causalities between online experiences and privacy behaviors

    Specifying and Executing User Agents in an Environment of Reasoning and RESTful Systems Using the Guard-Stage-Milestone Approach

    Get PDF
    For Read-Write Linked Data, an environment of reasoning and RESTful interaction, we investigate the use of the Guard-Stage-Milestone approach for specifying and executing user agents. We present an ontology to specify user agents. Moreover, we give operational semantics to the ontology in a rule language that allows for executing user agents on Read-Write Linked Data. We evaluate our approach formally and regarding performance. Our work shows that despite different assumptions of this environment in contrast to the traditional environment of workflow management systems, the Guard-Stage-Milestone approach can be transferred and successfully applied on the web of Read-Write Linked Data

    Proceedings of the Air Transportation Management Workshop

    Get PDF
    The Air Transportation Management (ATM) Workshop was held 31 Jan. - 1 Feb. 1995 at NASA Ames Research Center. The purpose of the workshop was to develop an initial understanding of user concerns and requirements for future ATM capabilities and to initiate discussions of alternative means and technologies for achieving more effective ATM capabilities. The topics for the sessions were as follows: viewpoints of future ATM capabilities, user requirements, lessons learned, and technologies for ATM. In addition, two panel sessions discussed priorities for ATM, and potential contributions of NASA to ATM. The proceedings contain transcriptions of all sessions

    Initial Investigation of Operational Concept Elements for NASA's NextGen-Airportal Project Research

    Get PDF
    The NextGen-Airportal Project is organized into three research focus areas: Safe and Efficient Surface Operations, Coordinated Arrival/Departure Operations Management, and Airportal Transition and Integration Management. The content in this document was derived from an examination of constraints and problems at airports for accommodating future increases in air traffic, and from an examination of capabilities envisioned for NextGen. The concepts are organized around categories of constraints and problems and therefore do not precisely match, but generally reflect, the research focus areas. The concepts provide a framework for defining and coordinating research activities that are, and will be, conducted by the NextGen-Airportal Project. The concepts will help the research activities function as an integrated set focused on future needs for airport operations and will aid aligning the research activities with NextGen key capabilities. The concepts are presented as concept elements with more detailed sub-elements under each concept element. For each concept element, the following topics are discussed: constraints and problems being addressed, benefit descriptions, required technology and infrastructure, and an initial list of potential research topics. Concept content will be updated and more detail added as the research progresses. The concepts are focused on enhancing airportal capacity and efficiency in a timeframe 20 to 25 years in the future, which is similar to NextGen's timeframe

    Survey and Comparison of Optimization-Based Aggregation Methods for the Determination of the Flexibility Potentials at Vertical System Interconnections

    Get PDF
    The aggregation of operational active and reactive power flexibilities as the feasible operation region (FOR) is a main component of a hierarchical multi-voltage-level grid control as well as the cooperation of transmission and distribution system operators at vertical system interconnections. This article presents a new optimization-based aggregation approach, based on a modified particle swarm optimization (PSO) and compares it to non-linear and linear programming. The approach is to combine the advantages of stochastic and optimization-based methods to achieve an appropriate aggregation of flexibilities while obtaining additional meta information during the iterative solution process. The general principles for sampling an FOR are introduced in a survey of aggregation methods from the literature and the adaptation of the classic optimal power flow problem. The investigations are based on simulations of the Cigré medium voltage test system and are divided into three parts. The improvement of the classic PSO algorithm regarding the determination of the FOR are presented. The most suitable of four sampling strategies from the literature is identified and selected for the comparison of the optimization methods. The analysis of the results reveals a better performance of the modified PSO in sampling the FOR compared to the other optimization methods

    A Method for Individualizing the Prediction of Immunogenicity of Protein Vaccines and Biologic Therapeutics: Individualized T Cell Epitope Measure (iTEM)

    Get PDF
    The promise of pharmacogenomics depends on advancing predictive medicine. To address this need in the area of immunology, we developed the individualized T cell epitope measure (iTEM) tool to estimate an individual's T cell response to a protein antigen based on HLA binding predictions. In this study, we validated prospective iTEM predictions using data from in vitro and in vivo studies. We used a mathematical formula that converts DRB1* allele binding predictions generated by EpiMatrix, an epitope-mapping tool, into an allele-specific scoring system. We then demonstrated that iTEM can be used to define an HLA binding threshold above which immune response is likely and below which immune response is likely to be absent. iTEM's predictive power was strongest when the immune response is focused, such as in subunit vaccination and administration of protein therapeutics. iTEM may be a useful tool for clinical trial design and preclinical evaluation of vaccines and protein therapeutics

    Performance Evaluation of Individual Aircraft Based Advisory Concept for Surface Management

    Get PDF
    Surface operations at airports in the US are based on tactical operations, where departure aircraft primarily queue up and wait at the departure runways. NASA's Spot And Runway Departure Advisor (SARDA) tool was developed to address these inefficiencies through Air Traffic Control Tower advisories. The SARDA system is being updated to include collaborative gate hold, either tactically or strategically. This paper presents the results of the human-in-the-loop evaluation of the tactical gate hold version of SARDA in a 360 degree simulated tower setting. The simulations were conducted for the east side of the Dallas/Fort Worth airport. The new system provides gate hold, ground controller and local controller advisories based on a single scheduler. Simulations were conducted with SARDA on and off, the off case reflecting current day operations with no gate hold. Scenarios based on medium (1.2x current levels) and heavy (1.5x current levels) traffic were explored. Data collected from the simulation was analyzed for runway usage, delay for departures and arrivals, and fuel consumption. Further, Traffic Management Initiatives were introduced for a subset of the aircraft. Results indicated that runway usage did not change with the use of SARDA, i.e., there was no loss in runway throughput as compared to baseline. Taxiing delay was significantly reduced with the use of advisory by 45% in medium scenarios and 60% in heavy. Arrival delay was unaffected by the use of advisory. Total fuel consumption was also reduced by 23% in medium traffic and 33% in heavy. TMI compliance appeared unaffected by the advisor

    Performance Evaluation of SARDA: An Individual Aircraft-Based Advisory Concept for Surface Management

    Get PDF
    Surface operations at airports in the US are based on tactical operations, where departure aircraft primarily queue up and wait at the departure runways. NASAs Spot And Runway Departure Advisor (SARDA) tool was developed to address these inefficiencies through Air Traffic Control Tower advisories. The SARDA system is being updated to include collaborative gate hold, either tactically or strategically. This paper presents the results of the human-in-the-loop evaluation of the tactical gate hold version of SARDA in a 360 degree simulated tower setting. The simulations were conducted for the east side of the Dallas-Fort Worth airport. The new system provides gate hold, ground controller and local controller advisories based on a single scheduler. Simulations were conducted with SARDA on and off, the off case reflecting current day operations with no gate hold. Scenarios based on medium (1.2x current levels) and heavy (1.5x current levels) traffic were explored. Data collected from the simulation was analyzed for runway usage, delay for departures and arrivals, and fuel consumption. Further, Traffic Management Initiatives were introduced for a subset of the aircraft. Results indicated that runway usage did not change with the use of SARDA, i.e., there was no loss in runway throughput as compared to baseline. Taxiing delay was significantly reduced with the use of advisory by 45 in medium scenarios and 60 in heavy. Arrival delay was unaffected by the use of advisory. Total fuel consumption was also reduced by 23 in medium traffic and 33 in heavy. TMI compliance appeared unaffected by the advisory
    corecore